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The maximum intensity, Imax, and time required to reach the
maximum emission, tmax, for 1-aminopyrene monitored in
1,1A-oxalyldi-4-methylimidazole (OD4MI) chemilumines-
cence (CL) reactions are approximately 61 times higher and
16 times faster than their respective values for bis(2,4,6-
trichlorophenyl)oxalate (TCPO) CL reactions in the pres-
ence of imidazole (ImH).

Recently, we1 reported evidence for two distinct peroxyoxalate
chemiluminescence (PO-CL) reaction pathways (Scheme 1).
These alternative pathways, which we termed the bis(2,4,6-
trichlorophenyl)oxalate (TCPO)-CL and 1,1A-oxalyldiimida-
zole (ODI)-CL reactions, were dependent on the mixing order
of the CL reagents. We also suggested that method development
for analyzing polycyclic aromatic hydrocarbons (PAHs) under
ODI-CL reaction conditions might be better than under TCPO-
CL reaction conditions because the CL curve generated was
much stronger and faster.1

In this paper, we have studied the effects of three imidazole
derivatives (ImH, 2-methylimidazole (2-MImH), and 4-methyl-
imidazole (4-MImH)) in TCPO-CL reactions. In addition, the
characteristics of ODI, 1,1A-oxalyldi-2-methylimidazole
(OD2MI) and 1,1A-oxalyldi-4-methylimidazole (OD4MI)
formed from reactions between TCPO and the corresponding
imidazole derivatives prior to addition of H2O2 and lumino-
phore were investigated for the PO-CL reaction pathway shown
in the bottom half of Scheme 1. Characteristics of the
intermediates formed under each CL reaction condition will
contribute to a more detailed understanding of PO-CL mecha-
nisms. We selected 1-aminopyrene as the chemiluminophore
because amino- and nitro-PAHs are important environmental
contaminants that are generally more toxic (e.g., mutagenic,
carcinogenic) than their respective PAH parent compounds.2,3

Because fluorescence quantum yields of nitro-PAHs are
generally small, they are often reduced to amino-PAHs before
their analysis using fluorescence4 and chemiluminescence5

techniques. Therefore, the results presented in this paper would
be useful for developing improved methods to determine low-
level concentrations of amino- and nitro-PAHs.

Table 1 shows that the maximum intensity, Imax, time to reach
the maximum emission, tmax, and the half-life of the decay
reaction, thalf, are dependent on the properties of the ImH
derivatives used in TCPO-CL reactions. tmax and thalf for
2-MImH were much faster than their respective values for
4-MImH and ImH because the pKa of 2-MImH is greater.
However, Imax for 2-MImH was only slightly higher than that
for 4-MImH, although both ImH derivatives generated Imax
values approximately four times higher than ImH itself. This is
because formation of the 2-MImH-substituted six-membered
cyclic intermediate (X-2) generated in the TCPO-CL reaction is
more sterically hindered than is the formation of the 4-MImH-
substituted ring (X-3).

As shown in Fig. 1, UV absorbance of 2,4,6-trichlorophenol
(TCP) monitored at 290 nm vs. time for the reaction between
TCPO and 4-MImH indicated that the formation of OD4MI was
much faster than formation of ODI and OD2MI because of the
better nucleophilicity of 4-MImH (4-MImH > ImH >
2-MImH). The formation of OD2MI from the reaction between
TCPO and 2-MImH was much slower because of the steric
hindrance of 2-MImH.

The concentration of each ODI derivative shown in Table 2
depends on the reaction time between TCPO and the corre-
sponding ImH derivative. The highest Imax was observed when
OD4MI, formed from the reaction between 4-MImH and TCPO
for 45 seconds, reacted with H2O2 in the presence of
1-aminopyrene (OD4MI-CL reaction). At mixing times longer
than 45 seconds for TCPO and 4MImH in the absence of H2O2
and 1-aminopyrene, Imax decreased exponentially. This is
because the excess 4-MImH used in the reaction catalyzed the

Scheme 1

Table 1 Effect of ImH derivatives in TCPO-CL reactions

ImH derivative pKa
6 Imax

a tmax (s) thalf (s)

ImH 6.99 1.0 7.9 109.7
2MImH 7.85 4.0 0.9 18.7
4MImH 7.55 3.7 3.3 29.1
a Relative Imax for each experimental condition was normalyzed by that
observed for the TCPO-CL reaction in the presence of ImH. Reaction
condition: [TCPO] = 0.1 mM, [H2O2] = 10.0 mM, [catalyst] = 2.0 mM,
[1-aminopyrene] = 0.3 mM, solvent+ethyl acetate.
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decomposition of OD4MI formed from the reaction between
TCPO and 4-MImH.1,7, 8 In addition, Imax of 1-aminopyrene in
the OD4MI-CL reaction was much higher than the correspond-
ing values for the ODI- and OD2MI-CL reactions. Even though
tmax values were similar for all ODI derivatives, thalf values
were clearly different, particularly for the OD2MI-CL reaction.
In conclusion, the results shown in Table 2 indicate that the
characteristics of high-energy intermediates (Y) capable of
transferring energy to 1-aminopyrene by the chemically
initiated electron-exchange luminescence (CIEEL) mechanism9

in Scheme 1 are dependent on the properties of the reactants
(ODI, OD2MI, and OD4MI). In other words, the plausible high-
energy intermediate structure (Y-3: 4-methylimidazolehy-
droperoxydioxatanone) formed from the reaction between
OD4MI and H2O2 is slightly different from those (Y-1:
imidazolehydroxydioxetanone or Y-2: 2-methylimidazolehy-

droperoxydioxatanone) produced from the reaction between
ODI (or OD2MI) and H2O2.

Many of the minimized analytical separation systems being
developed today such as capillary electrophoresis10 and micro-
chips11require observation times in the millisecond range to
preserve the band resolution. Unfortunately, the kinetics of the
PO-CL reaction pathway (the upper reaction pathway in
Scheme 1) selected by most research groups to determine
detection limits of luminophores capable of accepting energy
from X-1 are so slow that extra flow elements are needed to
observe the reaction in a time window at maximum emission
intensity. An analytical separation system with extra flow
elements would generally be larger than a corresponding
minimized system but not have better resolution due to band
broadening. As shown in Tables 1 and 2, values for Imax and
tmax observed with 1-aminopyrene and Y-3 are 61.1 times
larger and 15.8 times faster than their respective values obtained
from the interaction between 1-aminopyrene and X-1. These
results suggest that advanced analytical methods to determine
low-level concentrations of amino- and nitro-PAH can be
developed using the former reaction pathway (the bottom
reaction pathway in Scheme 1). Also, the preliminary experi-
mental results shown in this paper suggest that advanced micro-
analytical separation systems with PO-CL detection could be
developed to determine low-level concentrations of lumino-
phores.
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Fig. 1 UV absorbance (290 nm) of TCP vs. time for the reaction between
0.02 mM TCPO and 1.0 mM ImH derivative (8: 4MImH, 2: ImH, and Ω:
2MImH) in ethyl acetate.

Table 2 Comparison of CL curves generated from ODI derivative-CL
reactions

ODI derivative Reaction time (s)a Imax
b tmax (s) thalf (s)

ODI
OD2MI
OD4MI

120.0
180.0
45.0

31.1
15.6
61.1

0.6
0.5
0.5

2.4
7.2
2.9

a Reaction time between TCPO and ImH derivative (ImH, 2MImH, and
4MImH) to form maximum concentrations of ODI derivatives. b Relative
Imax for each experimental condition was normalized by that observed for
the TCPO-CL reaction in the presence of ImH. Reaction conditions:
[TCPO] = 0.1 mM, [H2O2] = 10.0 mM, [ImH] = 2.0 mM, [2MImH] =
2.0 mM, [4MImH] = 2.0 mM, [1-aminopyrene] = 0.3 mM, solvent: ethyl
acetate.
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